Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Arch Pathol Lab Med ; 145(4): 407-414, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1194781

ABSTRACT

CONTEXT.­: Autopsy pathologists, including medical examiners, provide valuable public health support for infectious disease deaths through surveillance for deaths of public health concern including emerging infections, identifying causative organisms for unexplained deaths, and providing insights into the pathology and pathogenesis of novel or unusual infections. However, autopsy poses biosafety risks to workers within and outside the laboratory. The highest rates of laboratory-acquired infections occur in autopsy workers. OBJECTIVE.­: To design and construct an appropriately biosafe autopsy laboratory. DESIGN.­: We conducted a biosafety risk assessment for autopsy workers using the process developed by the US Centers for Disease Control and Prevention and National Institutes of Health and applied these findings as the basis of laboratory design and construction. RESULTS.­: Autopsy workers are unpredictably exposed to a variety of infectious organisms, including hepatitis C virus, HIV, and Mycobacterium tuberculosis. Hazardous autopsy procedures include using and encountering sharp objects and the generation of aerosols from dissection, fluid aspiration, rinsing tissues, and dividing bone with an oscillating saw. CONCLUSIONS.­: Exposure to blood-borne and airborne pathogens from procedures that can cause cutaneous inoculation and inhalation of aerosols indicates that human autopsies should be performed at biosafety level 3. We designed a large, entirely biosafety level 3 medical examiner autopsy laboratory using design principles and characteristics that can be scaled to accommodate smaller academic or other hospital-based autopsy spaces. Containment was achieved through a concentric ring design, with access control at interface zones. As new autopsy laboratories are planned, we strongly recommend that they be designed to function uniformly at biosafety level 3.


Subject(s)
Autopsy , Communicable Diseases/transmission , Containment of Biohazards , Facility Design and Construction , Infection Control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Laboratories , Occupational Exposure/prevention & control , Coroners and Medical Examiners , Humans , Laboratory Personnel , Occupational Exposure/adverse effects , Occupational Health , Risk Assessment , Risk Factors , Safety Management
2.
Exp Biol Med (Maywood) ; 246(8): 952-959, 2021 04.
Article in English | MEDLINE | ID: covidwho-992323

ABSTRACT

The ongoing pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed a substantial strain on the supply of personal protective equipment, particularly the availability of N95 respirators for frontline healthcare personnel. These shortages have led to the creation of protocols to disinfect and reuse potentially contaminated personal protective equipment. A simple and inexpensive decontamination procedure that does not rely on the use of consumable supplies is dry heat incubation. Although reprocessing with this method has been shown to maintain the integrity of N95 respirators after multiple decontamination procedures, information on the ability of dry heat incubation to inactivate SARS-CoV-2 is largely unreported. Here, we show that dry heat incubation does not consistently inactivate SARS-CoV-2-contaminated N95 respirators, and that variation in experimental conditions can dramatically affect viability of the virus. Furthermore, we show that SARS-CoV-2 can survive on N95 respirators that remain at room temperature for at least five days. Collectively, our findings demonstrate that dry heat incubation procedures and ambient temperature for five days are not viable methods for inactivating SARS-CoV-2 on N95 respirators for potential reuse. We recommend that decontamination procedures being considered for the reuse of N95 respirators be validated at each individual site and that validation of the process must be thoroughly conducted using a defined protocol.


Subject(s)
COVID-19 , Hot Temperature , Masks , Pandemics , SARS-CoV-2/metabolism , Virus Inactivation , Animals , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/therapy , Chlorocebus aethiops , Humans , Vero Cells
3.
Exp Biol Med (Maywood) ; 245(11): 933-939, 2020 06.
Article in English | MEDLINE | ID: covidwho-245432

ABSTRACT

IMPACT STATEMENT: There is a critical shortage of personal protective equipment (PPE) around the globe. This article describes the safe collection, storage, and decontamination of N95 respirators using hydrogen peroxide vapor (HPV). This article is unique because it describes the HPV process in an operating room, and is therefore, a deployable method for many healthcare settings. Results presented here offer creative solutions to the current PPE shortage.


Subject(s)
Betacoronavirus/drug effects , Decontamination/methods , Hydrogen Peroxide/pharmacology , Masks/virology , Respiratory Protective Devices/virology , COVID-19 , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL